Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Phys Chem Chem Phys ; 25(19): 13508-13520, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2316697

ABSTRACT

SARS-CoV-2 RNA dependent RNA polymerase (RdRp) serves as a highly promising antiviral drug target such as for a Remdesivir nucleotide analogue (RDV-TP or RTP). In this work, we mainly used alchemical all-atom simulations to characterize relative binding free energetics between the nucleotide analogue RTP and natural cognate substrate ATP upon initial binding and pre-catalytic insertion into the active site of SARS-CoV-2 RdRp. Natural non-cognate substrate dATP and mismatched GTP were also examined for computation control. We first identified significant differences in dynamical responses between nucleotide initial binding and subsequent insertion configurations to the open and closed active sites of the RdRp, respectively, though the RdRp protein conformational changes between the active site's open and closed states are subtle. Our alchemical simulations indicated that upon initial binding (active site open), RTP and ATP show similar binding free energies to the active sites while in the insertion state (active site closed), ATP is more stabilized (∼-2.4 kcal mol-1) than RTP in free energetics. Additional analyses show, however, that RTP is more stabilized in binding energetics than ATP, in both the insertion and initial binding states, with RTP more stabilized due to the electrostatic energy in the insertion state and due to vdW energy in the initial binding state. Hence, it appears that natural cognate ATP still excels at association stability with the RdRp active site due to that ATP maintains sufficient flexibilities e.g., in base pairing with the template, which exemplifies an entropic contribution to the cognate substrate stabilization. These findings highlight the importance of substrate flexibilities in addition to energetic stabilization in antiviral nucleotide analogue design.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Catalytic Domain , RNA, Viral , COVID-19 Drug Treatment , Adenosine Monophosphate/chemistry , Antiviral Agents/chemistry , Adenosine Triphosphate/metabolism
2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2316205

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health concern. Three years since its origin, despite the approval of vaccines and specific treatments against this new coronavirus, there are still high rates of infection, hospitalization, and mortality in some countries. COVID-19 is characterised by a high inflammatory state and coagulation disturbances that may be linked to purinergic signalling molecules such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), and purinergic receptors (P1 and P2). These nucleotides/nucleosides play important roles in cellular processes, such as immunomodulation, blood clot formation, and vasodilation, which are affected during SARS-CoV-2 infection. Therefore, drugs targeting this purinergic pathway, currently used for other pathologies, are being evaluated in preclinical and clinical trials for COVID-19. In this review, we focus on the potential of these drugs to control the release, degradation, and reuptake of these extracellular nucleotides and nucleosides to treat COVID-19. Drugs targeting the P1 receptors could have therapeutic efficacy due to their capacity to modulate the cytokine storm and the immune response. Those acting in P2X7, which is linked to NLRP3 inflammasome activation, are also valuable candidates as they can reduce the release of pro-inflammatory cytokines. However, according to the available preclinical and clinical data, the most promising medications to be used for COVID-19 treatment are those that modulate platelets behaviour and blood coagulation factors, mainly through the P2Y12 receptor.


Subject(s)
COVID-19 , Nucleosides , Humans , Nucleosides/metabolism , COVID-19 Drug Treatment , SARS-CoV-2/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Receptors, Purinergic/metabolism
3.
Front Immunol ; 13: 1012027, 2022.
Article in English | MEDLINE | ID: covidwho-2318196

ABSTRACT

Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients' cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.


Subject(s)
COVID-19 , Adenosine/metabolism , Adenosine Diphosphate , Adenosine Triphosphate/metabolism , Humans , Purines , Severity of Illness Index , Signal Transduction
4.
Cells ; 12(6)2023 03 11.
Article in English | MEDLINE | ID: covidwho-2263705

ABSTRACT

BACKGROUND: COVID-19 has a major impact on cardiovascular diseases and may lead to myocarditis or cardiac failure. The clove-like spike (S) protein of SARS-CoV-2 facilitates its transmission and pathogenesis. Cardiac mitochondria produce energy for key heart functions. We hypothesized that S1 would directly impair the functions of cardiomyocyte mitochondria, thus causing cardiac dysfunction. METHODS: Through the Seahorse Mito Stress Test and real-time ATP rate assays, we explored the mitochondrial bioenergetics in human cardiomyocytes (AC16). The cells were treated without (control) or with S1 (1 nM) for 24, 48, and 72 h and we observed the mitochondrial morphology using transmission electron microscopy and confocal fluorescence microscopy. Western blotting, XRhod-1, and MitoSOX Red staining were performed to evaluate the expression of proteins related to energetic metabolism and relevant signaling cascades, mitochondrial Ca2+ levels, and ROS production. RESULTS: The 24 h S1 treatment increased ATP production and mitochondrial respiration by increasing the expression of fatty-acid-transporting regulators and inducing more negative mitochondrial membrane potential (Δψm). The 72 h S1 treatment decreased mitochondrial respiration rates and Δψm, but increased levels of reactive oxygen species (ROS), mCa2+, and intracellular Ca2+. Electron microscopy revealed increased mitochondrial fragmentation/fission in AC16 cells treated for 72 h. The effects of S1 on ATP production were completely blocked by neutralizing ACE2 but not CD147 antibodies, and were partly attenuated by Mitotempo (1 µM). CONCLUSION: S1 might impair mitochondrial function in human cardiomyocytes by altering Δψm, mCa2+ overload, ROS accumulation, and mitochondrial dynamics via ACE2.


Subject(s)
COVID-19 , Myocytes, Cardiac , Rats , Animals , Humans , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Mitochondria, Heart/metabolism , Adenosine Triphosphate/metabolism
5.
J Biomol Struct Dyn ; 40(13): 6039-6051, 2022 08.
Article in English | MEDLINE | ID: covidwho-2272318

ABSTRACT

RNA-dependent RNA polymerase (RdRp), also called nsp12, is considered a promising but challenging drug target for inhibiting replication and hence, the growth of various RNA-viruses. In this report, a computational study is performed to offer insights on the binding of Remdesivir and Galidesivir with SARS-CoV2 RdRp with natural substrate, ATP, as the control. It was observed that Remdesivir and Galidesivir exhibited similar binding energies for their best docked poses, -6.6 kcal/mole and -6.2 kcal/mole, respectively. ATP also displayed comparative and strong binding free energy of -6.3 kcal/mole in the catalytic site of RdRp. However, their binding locations within the active site are distinct. Further, the interaction of catalytic site residues (Asp760, Asp761, and Asp618) with Remdesivir and Galidesivir is comprehensively examined. Conformational changes of RdRp and bound molecules are demonstrated using 100 ns explicit solvent simulation of the protein-ligand complex. Simulation suggests that Galidesivir binds at the non-catalytic location and its binding strength is relatively weaker than ATP and Remdesivir. Remdesivir also binds at the catalytic site and showed high potency to inhibit the function of RdRp. Binding of co-factor units nsp7 and nsp8 with RdRp (nsp12) complexed with Remdesivir and Galidesivir was also examined. MMPBSA binding energy for all three complexes has been computed across the 100 ns simulation trajectory. Overall, this study suggests, Remdesivir has anti-RdRp activity via binding at a catalytic site. In contrast, Galidesivir may not have direct anti-RdRp activity but it can induce a conformational change in the RNA polymerase.


Subject(s)
Antiviral Agents , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Adenosine Triphosphate/metabolism , Antiviral Agents/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: covidwho-2242038

ABSTRACT

Myocardial damage caused by the newly emerged coronavirus (SARS-CoV-2) infection is one of the key determinants of COVID-19 severity and mortality. SARS-CoV-2 entry to host cells is initiated by binding with its receptor, angiotensin-converting enzyme (ACE) 2, and the ACE2 abundance is thought to reflect the susceptibility to infection. Here, we report that ibudilast, which we previously identified as a potent inhibitor of protein complex between transient receptor potential canonical (TRPC) 3 and NADPH oxidase (Nox) 2, attenuates the SARS-CoV-2 spike glycoprotein pseudovirus-evoked contractile and metabolic dysfunctions of neonatal rat cardiomyocytes (NRCMs). Epidemiologically reported risk factors of severe COVID-19, including cigarette sidestream smoke (CSS) and anti-cancer drug treatment, commonly upregulate ACE2 expression level, and these were suppressed by inhibiting TRPC3-Nox2 complex formation. Exposure of NRCMs to SARS-CoV-2 pseudovirus, as well as CSS and doxorubicin (Dox), induces ATP release through pannexin-1 hemi-channels, and this ATP release potentiates pseudovirus entry to NRCMs and human iPS cell-derived cardiomyocytes (hiPS-CMs). As the pseudovirus entry followed by production of reactive oxygen species was attenuated by inhibiting TRPC3-Nox2 complex in hiPS-CMs, we suggest that TRPC3-Nox2 complex formation triggered by panexin1-mediated ATP release participates in exacerbation of myocardial damage by amplifying ACE2-dependent SARS-CoV-2 entry.


Subject(s)
COVID-19 , NADPH Oxidase 2 , TRPC Cation Channels , Animals , Humans , Rats , Adenosine Triphosphate/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidase 2/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Up-Regulation , TRPC Cation Channels/metabolism
7.
J Biol Chem ; 299(3): 102980, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220926

ABSTRACT

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase , SARS-CoV-2 , Viral Nonstructural Proteins , Humans , Adenosine Triphosphate/metabolism , COVID-19/virology , RNA , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism
8.
Emerg Microbes Infect ; 11(1): 2529-2543, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2107214

ABSTRACT

Autophagy, a cellular surveillance mechanism, plays an important role in combating invading pathogens. However, viruses have evolved various strategies to disrupt autophagy and even hijack it for replication and release. Here, we demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV) non-structural protein 1(nsp1) induces autophagy but inhibits autophagic activity. MERS-CoV nsp1 expression increased ROS and reduced ATP levels in cells, which activated AMPK and inhibited the mTOR signalling pathway, resulting in autophagy induction. Meanwhile, as an endonuclease, MERS-CoV nsp1 downregulated the mRNA of lysosome-related genes that were enriched in nsp1-located granules, which diminished lysosomal biogenesis and acidification, and inhibited autophagic flux. Importantly, MERS-CoV nsp1-induced autophagy can lead to cell death in vitro and in vivo. These findings clarify the mechanism by which MERS-CoV nsp1-mediated autophagy regulation, providing new insights for the prevention and treatment of the coronavirus.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/physiology , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Lysosomes/metabolism , Autophagy , Endonucleases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Adenosine Triphosphate/metabolism
9.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2066120

ABSTRACT

Platelets produce inorganic polyphosphate (polyP) upon activation to stimulate blood coagulation. Some researchers have linked polyP metabolism to ATP production, although the metabolic linkage is yet to be elucidated. We found evidence for this possibility in our previous study on professional athletes (versus non-athletes), and proposed that the regulatory mechanism might be different for these two groups. To explore this aspect further, we investigated the effects of modulated ATP production on polyP levels. Blood samples were obtained from Japanese healthy, non-athletes in the presence of acid-citrate-dextrose. The platelets in the plasma were treated with oligomycin, rotenone, and GlutaMAX to modulate ATP production. PolyP level was quantified fluorometrically and visualized using 4',6-diamidino-2-phenylindole. Correlations between polyP and ATP or NADH were then calculated. Contrary to the hypothesis, inhibitors of ATP production increased polyP levels, whereas amino acid supplementation produced the opposite effect. In general, however, polyP levels were positively correlated with ATP levels and negatively correlated with NADH levels. Since platelets are metabolically active, they exhibit high levels of ATP turnover rate. Therefore, these findings suggest that ATP may be involved in polyP production in the resting platelets of non-athletes.


Subject(s)
Polyphosphates , Rotenone , Adenosine Triphosphate/metabolism , Amino Acids , Citrates , Glucose , Humans , NAD , Oligomycins , Polyphosphates/metabolism
10.
Thromb Haemost ; 122(12): 2001-2010, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062344

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is often associated with mild thrombocytopenia and increased platelet reactivity. OBJECTIVE: The aim of the current study was to investigate the adenosine triphosphate (ATP) release kinetics of platelets in hospitalized SARS-CoV-2-infected patients. METHODS: We studied time-dependent platelet activation in whole blood by monitoring the ATP release kinetics upon stimulation with a PAR1 receptor agonist in 41 hospitalized critically ill COVID-19 patients, 47 hospitalized noncritically ill COVID-19 patients, and 30 healthy controls. RESULTS: Our study demonstrated that platelets of critically ill COVID-19 patients were hyper-responsive with a shorter platelet response time (PRT) and a reduced platelet granule release capacity (GRC), probably due to chronic activation. The median PRT of COVID-19 patients admitted to the critical care unit was 10 and 7 seconds shorter than the median PRT in healthy controls and noncritical COVID-19 patients, respectively. Both PRT and GRC were also associated with D-dimer (Spearman r [r s] = -0.51, p < 0.0001 and r s = -0.23, p < 0.05), C-reactive protein (CRP) (r s = -0.59, p < 0.0001 and r s = -0.41, p < 0.01), and neutrophil-to-lymphocyte ratio (NLR) (r s = -0.42, p < 0.0001 and r s = -0.26, p < 0.05). Moreover, an increased PRT and a reduced GRC were associated with an increased mortality (odds ratio [OR]: 18.8, 95% confidence interval [CI]: 6.5-62.8, p < 0.0001 and OR: 4.0; 95% CI: 1.6-10.4, p < 0.01). These relationships remained significant after adjustment for age, sex, D-dimer, CRP, and NLR. CONCLUSION: Using an accessible agonist-induced platelet granule ATP release assay, we show that platelet hyper-responsiveness and reduced platelet GRC in COVID-19 patients were associated with critical illness and mortality.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , SARS-CoV-2 , Blood Platelets/metabolism , Critical Illness , C-Reactive Protein/metabolism , Adenosine Triphosphate/metabolism , Retrospective Studies
11.
J Cell Biochem ; 123(8): 1281-1284, 2022 08.
Article in English | MEDLINE | ID: covidwho-2013552

ABSTRACT

COVID-19 has been proposed to be an endothelial disease, as endothelial damage and oxidative stress contribute to its systemic inflammatory and thrombotic events. Polyphenols, natural antioxidant compounds appear as promising agents to prevent and treat COVID-19. Polyphenols bind and inhibit the F1 Fo -ATP synthase rotary catalysis. An early target of polyphenols may be the ectopic F1 Fo -ATP synthase expressed on the endothelial plasma membrane. Among the pleiotropic beneficial action of polyphenols in COVID-19, modulation of the ecto-F1 Fo -ATP synthase, lowering the oxidative stress produced by the electron transfer chain coupled to it, would not be negligible.


Subject(s)
COVID-19 Drug Treatment , Polyphenols , Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Humans , Mitochondrial Proton-Translocating ATPases/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , Proton-Translocating ATPases/metabolism
12.
J Med Chem ; 65(16): 11058-11065, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-1972507

ABSTRACT

Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb) and is ranked as the second killer infectious disease after COVID-19. Proteasome accessory factor A (PafA) is considered an attractive target because of its low sequence conservation in humans and its role in virulence. In this study, we designed a mutant of Mtb PafA that enabled large-scale purification of active PafA. Using a devised high-throughput screening assay, two PafA inhibitors were discovered. ST1926 inhibited Mtb PafA by binding in the Pup binding groove, but it was less active against Corynebacterium glutamicum PafA because the ST1926-binding residues are not conserved. Bithionol bound to the conserved ATP-binding pocket, thereby, inhibits PafA in an ATP-competitive manner. Both ST1926 and bithionol inhibited the growth of an attenuated Mtb strain (H37Ra) at micromolar concentrations. Our work thus provides new tools for tuberculosis research and a foundation for future PafA-targeted drug development for treating tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Proteasome Inhibitors , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bithionol/metabolism , Mycobacterium tuberculosis/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology
13.
Front Cell Infect Microbiol ; 12: 893044, 2022.
Article in English | MEDLINE | ID: covidwho-1952262

ABSTRACT

Severe COVID-19 in children is rare, but the reasons underlying are unclear. Profound alterations in T cell responses have been well characterized in the course of adult severe COVID-19, but little is known about the T cell function in children with COVID-19. Here, we made three major observations in a cohort of symptomatic children with acute COVID-19: 1) a reduced frequency of circulating FoxP3+ regulatory T cells, 2) the prevalence of a TH17 polarizing microenvironment characterized by high plasma levels of IL-6, IL-23, and IL17A, and an increased frequency of CD4+ T cells expressing ROR-γt, the master regulator of TH17 development, and 3) high plasma levels of ATP together with an increased expression of the P2X7 receptor. Moreover, that plasma levels of ATP displayed an inverse correlation with the frequency of regulatory T cells but a positive correlation with the frequency of CD4+ T cells positive for the expression of ROR-γt. Collectively, our data indicate an imbalance in CD4+ T cell profiles during pediatric COVID-19 that might favor the course of inflammatory processes. This finding also suggests a possible role for the extracellular ATP in the acquisition of an inflammatory signature by the T cell compartment offering a novel understanding of the involved mechanisms.


Subject(s)
COVID-19 , Nuclear Receptor Subfamily 1, Group F, Member 3 , Adenosine Triphosphate/metabolism , Adult , CD4-Positive T-Lymphocytes/metabolism , Child , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory , Th17 Cells
14.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1820294

ABSTRACT

Connexin43 (Cx43) hemichannels form a pathway for cellular communication between the cell and its extracellular environment. Under pathological conditions, Cx43 hemichannels release adenosine triphosphate (ATP), which triggers inflammation. Over the past two years, azithromycin, chloroquine, dexamethasone, favipiravir, hydroxychloroquine, lopinavir, remdesivir, ribavirin, and ritonavir have been proposed as drugs for the treatment of the coronavirus disease 2019 (COVID-19), which is associated with prominent systemic inflammation. The current study aimed to investigate if Cx43 hemichannels, being key players in inflammation, could be affected by these drugs which were formerly designated as COVID-19 drugs. For this purpose, Cx43-transduced cells were exposed to these drugs. The effects on Cx43 hemichannel activity were assessed by measuring extracellular ATP release, while the effects at the transcriptional and translational levels were monitored by means of real-time quantitative reverse transcriptase polymerase chain reaction analysis and immunoblot analysis, respectively. Exposure to lopinavir and ritonavir combined (4:1 ratio), as well as to remdesivir, reduced Cx43 mRNA levels. None of the tested drugs affected Cx43 protein expression.


Subject(s)
COVID-19 Drug Treatment , Connexin 43 , Adenosine Triphosphate/metabolism , Connexin 43/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Humans , Inflammation , Lopinavir/pharmacology , Lopinavir/therapeutic use , Ritonavir/pharmacology
15.
J Med Chem ; 65(2): 1302-1312, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1747278

ABSTRACT

CK2α and CK2α' are paralogous catalytic subunits of CK2, which belongs to the eukaryotic protein kinases. CK2 promotes tumorigenesis and the spread of pathogenic viruses like SARS-CoV-2 and is thus an attractive drug target. Efforts to develop selective CK2 inhibitors binding offside the ATP site had disclosed the αD pocket in CK2α; its occupation requires large conformational adaptations of the helix αD. As shown here, the αD pocket is accessible also in CK2α', where the necessary structural plasticity can be triggered with suitable ligands even in the crystalline state. A CK2α' structure with an ATP site and an αD pocket ligand guided the design of the bivalent CK2 inhibitor KN2. It binds to CK2 with low nanomolar affinity, is cell-permeable, and suppresses the intracellular phosphorylation of typical CK2 substrates. Kinase profiling revealed a high selectivity of KN2 for CK2 and emphasizes the selectivity-promoting potential of the αD pocket.


Subject(s)
Casein Kinase II/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Casein Kinase II/chemistry , Casein Kinase II/metabolism , Crystallization , HEK293 Cells , HeLa Cells , Humans , Ligands , Phosphorylation , Protein Conformation , Substrate Specificity
16.
Life Sci ; 297: 120482, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1734800

ABSTRACT

Identifying signaling pathways and molecules involved in SARS-CoV-2 pathogenesis is pivotal for developing new effective therapeutic or preventive strategies for COVID-19. Pannexins (PANX) are ATP-release channels in the plasma membrane essential in many physiological and immune responses. Activation of pannexin channels and downstream purinergic receptors play dual roles in viral infection, either by facilitating viral replication and infection or inducing host antiviral defense. The current review provides a hypothesis demonstrating the possible contribution of the PANX1 channel and purinergic receptors in SARS-CoV-2 pathogenesis and mechanism of action. Moreover, we discuss whether targeting these signaling pathways may provide promising preventative therapies and treatments for patients with progressive COVID-19 resulting from excessive pro-inflammatory cytokines and chemokines production. Several inhibitors of this pathway have been developed for the treatment of other viral infections and pathological consequences. Specific PANX1 inhibitors could be potentially included as part of the COVID-19 treatment regimen if, in future, studies demonstrate the role of PANX1 in COVID-19 pathogenesis. Of note, any ATP therapeutic modulation for COVID-19 should be carefully designed and monitored because of the complex role of extracellular ATP in cellular physiology.


Subject(s)
COVID-19 Drug Treatment , Adenosine Triphosphate/metabolism , Connexins/metabolism , Humans , Nerve Tissue Proteins/metabolism , Receptors, Purinergic/metabolism , SARS-CoV-2
17.
J Mol Med (Berl) ; 100(4): 645-663, 2022 04.
Article in English | MEDLINE | ID: covidwho-1729277

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has significantly impacted the world and has driven many researchers into the pathophysiology of COVID-19. In the findings, there is a close association between purinergic signaling and the immune response. Then, this study aimed to evaluate alterations in the purinergic signaling in COVID-19 patients according to range severity. We divided the COVID-19 patients into moderate and severe cases following the guideless of NIH and WHO, together with clinical characteristics. The blood samples were collected to obtain PBMCs and platelets. We analyzed the ectonucleotidase activities through ATP, ADP, AMP, Ado hydrolysis, E-NTPDase1 (CD39), and 5'-NT (CD73) expression by flow cytometry in total leukocytes. The extracellular ATP was measured by bioluminescence, and cytokines were analyzed by flow cytometry. We observed a decrease in ATP hydrolysis and increased AMP hydrolysis in PBMCs for both groups. In severe cases, ATP hydrolysis was raised for the platelets, while ADP and AMP hydrolysis have risen significantly in both groups. Additionally, there was a significant increase in ADP hydrolysis in severe cases compared to moderate cases. In addition, we observed an increase in the ADA activity in platelets of moderate patients. Moderate and severe cases showed increased expression of CD39 and CD73 in total leukocytes. To finalize the purinergic signaling, extracellular ATP was increased in both groups. Furthermore, there was an increase in IL-2, IL-6, IL-10, and IL-17 in moderate and severe groups. Thus, for the first time, our findings confirm the changes in purinergic signaling and immune response in COVID-19, in addition to making it more evident that the severity range directly impacts these changes. Therefore, the therapeutic potential of the purinergic system must be highlighted and studied as a possible target for the treatment of SARS-CoV-2 disease. KEY MESSAGES: COVID-19 patients exhibit alterations in purinergic system and immune response. High levels of extracellular ATP lead to different inflammatory responses. CD39 and CD73 expression were increased in COVID-19 patients. Cytokines IL-2, IL-6, IL-10, and IL-17 also were altered in these patients. The purinergic system may be a possibility target to SARS-CoV-2 treatments.


Subject(s)
COVID-19 , Adenosine Triphosphate/metabolism , Blood Platelets , Humans , Pandemics , SARS-CoV-2
18.
Sci Adv ; 8(7): eabl5966, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1714332

ABSTRACT

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F1Fo-adenosine 5'-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F1 subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded Fo complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.


Subject(s)
Acinetobacter baumannii , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy
19.
J Med Chem ; 65(5): 3706-3728, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1699705

ABSTRACT

Glucose, the primary substrate for ATP synthesis, is catabolized during glycolysis to generate ATP and precursors for the synthesis of other vital biomolecules. Opportunistic viruses and cancer cells often hijack this metabolic machinery to obtain energy and components needed for their replication and proliferation. One way to halt such energy-dependent processes is by interfering with the glycolytic pathway. 2-Deoxy-d-glucose (2-DG) is a synthetic glucose analogue that can inhibit key enzymes in the glycolytic pathway. The efficacy of 2-DG has been reported across an array of diseases and disorders, thereby demonstrating its broad therapeutic potential. Recent approval of 2-DG in India as a therapeutic approach for the management of the COVID-19 pandemic has brought renewed attention to this molecule. The purpose of this perspective is to present updated therapeutic avenues as well as a variety of chemical synthetic strategies for this medically useful sugar derivative, 2-DG.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Deoxyglucose/chemistry , Adenosine Triphosphate/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/diagnosis , COVID-19/virology , Deoxyglucose/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/pathology , Glycolysis/drug effects , Humans , Isotope Labeling , Mitochondria/metabolism , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/pathology , Positron-Emission Tomography , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Structure-Activity Relationship , Virus Replication/drug effects
20.
Purinergic Signal ; 18(1): 13-59, 2022 03.
Article in English | MEDLINE | ID: covidwho-1694363

ABSTRACT

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


Subject(s)
Adenosine Triphosphate/metabolism , COVID-19/immunology , Cytokine Release Syndrome/etiology , Inflammation/etiology , Lidocaine/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic/physiology , Anti-Inflammatory Agents/therapeutic use , Critical Care , Cytokine Release Syndrome/drug therapy , Humans , Inflammation/drug therapy , Infusions, Subcutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacology , Lymph Nodes/immunology , Lymphatic System/immunology , Male , Maximum Tolerated Dose , Middle Aged , Models, Immunological , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic/drug effects , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/physiology , Receptors, Purinergic P2X7/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Signal Transduction , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL